Landscape Architecture and Regional Planning

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Spatiotemporal Analysis of Thermal Inequity: A Case Study of Hong Kong

In recent years, thermal inequity research has received mounting interest amongst researchers worldwide. The present study aims to conduct a spatiotemporal analysis of thermal inequity in Hong Kong in 2006 and 2016. In this process, the identification of land surface temperature (LST) hotspots and their association with normalised differential vegetation index (NDVI), normalised differential built-up index (NDBI) and social vulnerability index (SoVI) clusters were examined using local Moran’s I spatial autocorrelation. Results show that an increase in the number of LST hotspots from 2006 to 2016 represented the worsening thermal inequity situation in Hong Kong. The low NDVI and high NDBI clusters were respectively discovered in the LST hotspots located in Kowloon and Kwai Tsing. Furthermore, the areas with high LST and high SoVI, represented as the heat vulnerable zones, expanded in the New Territory from 2006 to 2016 but downscaled in Kowloon. Some District Constituency Assembly Areas (DCCAs) in Nam Cheong were found with attributes of high LST, high NDBI, low NDVI and high SoVI in 2006 and 2016. This study concludes that thermal inequity varies spatiotemporally. Recommendations indicate that the socially vulnerable groups in Nam Cheong should be given the highest priority to implement urban heat mitigation and adaptation strategies. The findings will help policymakers to develop and implement proper policies to alleviate thermal inequity in Hong Kong.

Urban Heat, Heat Vulnerability, Built Environment, Local Moran’s I

APA Style

Chinmayee Mallick, Yang Yang. (2023). Spatiotemporal Analysis of Thermal Inequity: A Case Study of Hong Kong. Landscape Architecture and Regional Planning, 8(1), 9-31. https://doi.org/10.11648/j.larp.20230801.12

ACS Style

Chinmayee Mallick; Yang Yang. Spatiotemporal Analysis of Thermal Inequity: A Case Study of Hong Kong. Landsc. Archit. Reg. Plan. 2023, 8(1), 9-31. doi: 10.11648/j.larp.20230801.12

AMA Style

Chinmayee Mallick, Yang Yang. Spatiotemporal Analysis of Thermal Inequity: A Case Study of Hong Kong. Landsc Archit Reg Plan. 2023;8(1):9-31. doi: 10.11648/j.larp.20230801.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Acharya, B. K., Cao, C., Lakes, T., Chen, W., Naeem, S., & Pandit, S. (2018). Modeling the spatially varying risk factors of dengue fever in Jhapa district, Nepal, using the semi-parametric geographically weighted regression model. Int. J. Biometeorol. 62 (11), 1973-1986.
2. Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z. H.; Akbari, H. (2017). Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore, and Hong Kong. Cities. 62, 131-145.
3. Ambrey, C., Byrne, J., Matthews, T., Davison, A., Portanger, C., & Lo, A. (2017). Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia. Appl. Geogr. 89, 52-60.
4. Arshad, S., Ahmad, S. R., Abbas, S., Asharf, A., Siddiqui, N. A., & ul Islam, Z. (2020). Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan. Land Use Policy. 113, 105874.
5. Athukorala, D., & Murayama, Y. (2021). Urban heat island formation in Greater Cairo: spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient. Remote Sens. 13 (7), 1396.
6. Bao, J., Li, X., & Yu, C. (2015). The construction and validation of the heat vulnerability index, a review. Int. J. Environ. Res. Public Health. 12 (7), 7220-7234.
7. Burbidge, M., Smith Larsen, T., Feder, S., & Yan, S. (2022). Don’t blame it on the sunshine! An exploration of the spatial distribution of heat injustice across districts in Antwerp, Belgium. Local Environ. 27, 160-176.
8. Byrne, J., Ambrey, C., Portanger, C., Lo, A., Matthews, T., Baker, D., & Davison, A. (2016). Could urban greening mitigate suburban thermal inequity? the role of residents’ dispositions and household practices. Environ. Res. Lett. 11.
9. Chow, W. T.; Chuang, W. C.; Gober, P. (2016). Vulnerability to extreme heat in metropolitan Phoenix: spatial, temporal, and demographic dimensions. The Prof. Geogr. 64, 286-302.
10. Cutter, S. L.; Boruff, B. J.; Shirley, W. L. (2003). Social vulnerability to environmental hazards. Soc Sci Q, 84, 242– 261.
11. Dewan, A., Kiselev, G., & Botje, D. (2021). Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities. Appl. Geogr. 2021, 135, 102533.
12. Doiron, D.; Setton, E. M.; Shairsingh, K.; Brauer, M.; Hystad, P.; Ross, N. A.; Brook, J. R. (2020). Healthy built environment: Spatial patterns and relationships of multiple exposures and deprivation in Toronto, Montreal, and Vancouver. Environ. Int. 143, 106003.
13. Ebi, K. L.; Paulson, J. A. (2007). Climate change and children. Pediatr. Clin. N. Am. 54, 213-226.
14. Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E.; Hémon, D. (2006). Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 80, 16-24.
15. Golden, J. S. (2004). The built environment induced urban heat island effect in rapidly urbanizing arid regions–a sustainable urban engineering complexity. Environ. Res. 1, 321-349.
16. Grineski, S. E.; Collins, T. W.; Ford, P.; Fitzgerald, R.; Aldouri, R.; Velázquez-Angulo, G.; Angular, M. d. L. R.; Lu, D. (2012). Climate change and environmental injustice in a bi-national context. Appl. Geogr. 33, 25-35.
17. Grineski, S. E.; Collins, T. W.; McDonald, Y. J.; Aldouri, R.; Aboargob, F.; Eldeb, A.; Angular, M. d. L. R.; Velázquez-Angulo, G. (2015). Double exposure and the climate gap: changing demographics and extreme heat in Ciudad Juárez, Mexico. Local Environ. 20, 180-201.
18. Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Cecilia, J. X., Jin; C.; Li, X. (2020). Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustain. Cities Soc. 63, 102443.
19. Harlan, S. L.; Brazel, A. J.; Prashad, L.; Stefanov, W. L.; Larsen, L. (2006). Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 63, 2847-2863.
20. He, B. J.; Zhu, J.; Zhao, D. X.; Gou, Z. H.; Qi, J. D.; Wang, J. (2019). Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land use policy. 86, 147-157.
21. Hua, J.; Zhang, X.; Ren, C., Shi, Y.; Lee, T. C. (2021). Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016. Sustain. Cities Soc. 64, 102507.
22. Ingole, V.; Kovats, S.; Schumann, B.; Hajat, S.; Rocklöv, J.; Juvekar, S.; Armstrong, B. (2017). Socio environmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study. Int. J. Biometeorol. 61, 1797-1804.
23. Isa, N. A., Wan Mohd, W. M. N., & Salleh, S. A. (2017). The effects of built-up and green areas on the land surface temperature of the kuala lumpur city. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42.
24. Jamei, Y., Rajagopalan, P., & Sun, Q. C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci. Total Environ. 659, 1335-1351.
25. Jenerette, G. D.; Harlan, S. L.; Stefanov, W. L.; & Martin, C. A. (2011). Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 21, 2637-2651.
26. Johnson, K.; Depietri, Y.; Breil, M. (2019). Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311-323.
27. Kaciuba-Uscilko; H., Grucza, R. (2001). Gender differences in thermoregulation. Curr. Opin. Clin. Nutr. Metab. Care, 4, 533-536.
28. Kim, Y. O.; Lee, W., Kim, H.; Cho, Y. (2020). Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: a time-series multi-community study in Korea. Environ. Int. 142, 105868.
29. Kshetri, T. (2018). NDVI, NDBI & NDWI calculation using landsat 7, 8. Researchgate. Net. 327971920.
30. Lehnert, E. A.; Wilt, G.; Flanagan, B.; Hallisey, E. (2020). Spatial exploration of the CDC's Social Vulnerability Index and heat-related health outcomes in Georgia. Int. J. Disaster Risk Reduct. 46, 101517.
31. Liu, L.; Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 3, 1535-1552.
32. Lo, A. Y., Byrne, J. A., & Jim, C. Y. (2017). How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban For Urban Green. 23, 74-83.
33. Luenam, A., & Puttanapong, N. (2020). Modelling and analyzing spatial clusters of leptospirosis based on satellite-generated measurements of environmental factors in Thailand during 2013-2015. Geospat. Health. 15 (2).
34. Macnee, R. G.; Tokai, A. (2016). Heat wave vulnerability and exposure mapping for Osaka City, Japan. Environ. Syst. Decis. 36 (4), 368-376.
35. Medina-Ramón, M.; Zanobetti, A.; Cavanagh, D. P.; & Schwartz, J. (2006). Extreme temperatures, and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ. Health Perspect. 114, 1331-1336.
36. Mehrotra, S., Bardhan, R., & Ramamritham, K. (2021). Urban informal housing and surface urban heat island intensity: exploring spatial association in the City of Mumbai. Environ Urban. ASIA. 9 (2), 158-177.
37. Memon, R. A., Leung, D. Y., & Liu, C. H. (2009). An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmospheric Research, 94 (3), 491-500.
38. Mitchell, B. C.; Chakraborty, J. (2015). Landscapes of thermal inequity: disproportionate exposure to urban heat in the three largest US cities. Environ. Res. Lett. 2015, 10, 115005.
39. Mitchell, B. C.; Chakraborty, J. (2014). Urban Heat and Climate Justice: A Landscape of Thermal Inequity in Pinellas County, Florida. Geogr Rev. 104, 459-480.
40. Moss, T., & Kar, B. (2020). Socio-economic vulnerability to urban heat in Pheonix, Arizona, Texas during June 2020. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 6.
41. Naughton, M. P.; Henderson, A.; Mirabelli, M. C.; Kaiser, R.; Wilhelm, J. L.; Kieszak, S. M., Rubin, C. H.; McGeehan, M. A. (2002). Heat-related mortality during a 1999 heat wave in Chicago. Am. J. Prev. Med. 22, 221-227.
42. Nayak, S. G.; Shrestha, S.; Kinney, P. L.; Ross, Z.; Sheridan, S. C.; Pantea, C. I.; Hsu, W. H.; Muscatiello, N.; Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. Public Health. 161, 127-137.
43. Ng, E.; Chen, L.; Wang, Y.; Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build Environ. 47, 256-271.
44. Nichol, J. E., Fung, W. Y., Lam, K. S., & Wong, M. S. (2009). Urban heat island diagnosis using ASTER satellite images and ‘in situ’air temperature. Atmospheric Research, 94 (2), 276-284.
45. Nunfam, V. F.; Van Etten, E. J.; Oosthuizen, J.; Adusei-Asante, K.; Frimpong, K. (2019). Climate change and occupational heat stress risks and adaptation strategies of mining workers: perspectives of supervisors and other stakeholders in Ghana. Environ. Res. 169, 147-155.
46. Ogashawara, I.; Bastos, V. D. S. B. (2012). A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens. 4, 3596-3618.
47. Osberghaus, D., & Abeling, T. (2022). Heat vulnerability and adaptation of low-income households in Germany. Glob. Environ. Change. 72, 102446.
48. Ouyang, W., Morakinyo, T. E., Ren, C., Liu, S., & Ng, E. (2021). Thermal-irradiant performance of green infrastructure typologies: Field measurement study in a subtropical climate city. Sci. Total Environ. 764.
49. Peng, L. L.; Jim, C. Y. (2015). Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban For. Urban Green. 14, 554-561.
50. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon; F.-M., Nan; H., Zhou, L.; Myneni, R. B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 46, 696-703.
51. Pramanik, S.; Areendran, G.; Punia, M.; Sahoo, S. (2021). Spatio-temporal pattern of urban eco-environmental quality of Indian megacities using geo-spatial techniques. Geocarto Int. 1-24.
52. Ranagalage, M., Estoque, R. C., Zhang, X., & Murayama, Y. (2018). Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability. 10 (5), 1367.
53. Reddy, S. N.; Manikiam, B. (2017). Land surface temperature retrieval from LANDSAT data using emissivity estimation. Int. J. Appl. Eng. Res. 12, 9679-9687.
54. Reid, C. E.; O’neill, M. S.; Gronlund, C. J.; Brines, S. J.; Brown, D. G.; Diez-Roux, A. V.; Schwartz, J.(2009). Mapping community determinants of heat vulnerability. Environ. Health Perspect. 117, 1730-1736.
55. Rejuso, A. M.; Cortes, A. C.; Blanco, A. C.; Cruz, C. A.; Babaan, J. B. (2019). Spatio-Temporal Analysis of Urban Heat Island in Mandaue City, Philippines. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. 42, 361-367.
56. Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy. 103, 682-703.
57. Saverino, K. C., Routman, E., Lookingbill, T. R., Eanes, A. M., Hoffman, J. S., & Bao, R. (2021). Thermal inequity in Richmond, VA: the effect of an unjust evolution of the urban landscape on urban heat islands. Sustainability. 13 (3), 1511.
58. Shastri, H., & Ghosh, S. (2019). Urbanisation and surface urban heat island intensity (SUHII). In Climate change signals and response. Springer, Singapore. 73-90.
59. Siu, L. W.; Hart, M. A. (2013). Quantifying urban heat island intensity in Hong Kong SAR, China. Environ. Monit. Assess. 185, 4383-4398.
60. Siqi, J.; Yuhong, W. (2020). Effects of land use and land cover pattern on urban temperature variations: A case study in Hong Kong. Urban Clim. 34, 100693.
61. Song, J.; Huang, B.; Kim, J. S.; Wen, J.; Li, R. (2020). Fine-scale mapping of an evidence-based heat health risk index for high-density cities: Hong Kong as a case study. Sci. Total Environ. 718, 137226.
62. Sun, Q., Wu, Z., & Tan, J. (2012). The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ. Earth Sci. 65, 1687-1694.
63. Sun, Y.; Chau, P. H.; Wong, M.; Woo, J. (2017). Place-and age-responsive disaster risk reduction for Hong Kong: collaborative place audit and social vulnerability index for elders. Int. J. Disaster Risk Sci. 8, 121-133.
64. Takebayashi, H.; Moriyama, M. (2008). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build Environ. 42, 2971-2979.
65. Takkanon, P. A. (2016). Study of height to width ratios and Urban Heat Island Intensity of Bangkok. In the 4th International Conference on Countermeasures to Urban Heat Island. Singapore.
66. Tomlinson, C. J.; Chapman, L.; Thornes, J. E.; Baker, C. J. (2011). Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham, UK. Int. J. Health Geogr. 10, 1-14.
67. Tsou, J. Y.; Chao, M. C.; Li, X.; Chen, K. (2014). Applying RS and GIS to Study the Impacts of Urban Regeneration on Thermal Environment in Built-up Areas: A Case Study of Kowloon, Hong Kong. J. Comput. Civ. Eng. pp. 593-600.
68. Tsou, J.; Zhuang, J.; Li, Y.; Zhang, Y. (2017). Urban heat island assessment using the Landsat 8 data: a case study in Shenzhen and Hong Kong. Urban Sci. 1, 10.
69. Uejio, C. K.; Wilhelmi, O. V.; Golden, J. S.; Mills, D. M.; Gulino, S. P.; Samenow, J. P. (2011). Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place. 17, 498-507.
70. Wang, C.; Wang, Z. H.; Kaloush, K. E.; Shacat, J. (2021). Perceptions of urban heat island mitigation and implementation strategies: Survey and gap analysis. Sustain. Cities Soc. 66, 102687.
71. Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W. (2018). Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13, 034015.
72. Wong, M. S.; Peng, F., Zou, B.; Shi, W. Z.; Wilson, G. J. (2016). Spatially analyzing the inequity of the Hong Kong urban heat island by socio-demographic characteristics. Int. J. Environ. Res. Public Health. 13, 317.
73. Yaron, M.; Niermeyer, S. Clinical description of heat illness in children, Melbourne, Australia—a commentary. Wilderness Environ Med 2004, 15, 291-292.
74. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24 (3), 583-594.
75. Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 11, 256-264.